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Introduction 

Complexity analysis of cardiovascular control provides important  

physiological and clinical information 

 

 

The assessment of complexity of cardiovascular control is mainly  

based on univariate approaches  

 

 

Among these approaches fractal analysis is one of the most  

commonly utilized  



Computer-simulated fractal processes 

Complexity decreases with scaling exponent  β 

Y. Yamamoto et al, Am J Physiol, 269, R830-R837, 1995  



Y. Yamamoto et al, Am J Physiol, 269, R830-R837, 1995  

Fractal analysis of heart period variability  

during vagal blockade  



Y. Yamamoto et al, Am J Physiol, 269, R830-R837, 1995  

Fractal analysis of heart period variability  

during β-adrenergic blockade  



P. Castiglioni et al, J Physiol, 589, 355-369, 2011  

Overall spectrum of the scaling exponents of heart rate  

variability via detrended fluctuation analysis 

White noise . 

1/f 

Brownian motion 

Atropine Propranolol 

with α = (β+1)/2  

α
  

α
  



P. Castiglioni et al, J Physiol, 589:355-369, 2011  

white noise  

1/f 

Brownian motion 

Overall spectrum of the scaling exponents of heart  

rate variability via detrended fluctuation analysis 

α
  



C.O. Tan et al, J Physiol, 587, 3929-3941, 2009 

Fractal analysis of heart period variability  

during sympathetic activation 

after double-blockade baseline 

supine head-up tilt supine head-up tilt 



N. Iyengar et al, Am J Physiol, 271, R1078-R1084, 1996 

Age-related alterations in fractal scaling  

of heart period variability  



Drawback of the univariate approaches for the assessment  

of complexity of the cardiovascular control  

Univariate approaches for the evaluation of complexity of  

cardiovascular control has a major drawback 

 

 

They cannot take into account the relations among cardiovascular  

variables and quantify the contribution of specific physiological  

mechanisms to the overall complexity 



Aims 

 

1) to propose a multivariate model-based approach to  

     the assessment of complexity of cardiovascular control 

 

 

2) to decompose the complexity of a signal into  

    contributions due to the relations among variables 

 

 

3) to introduce in the assessment of complexity the 

    notion of causality to allow a deeper characterization 

    of the interactions among variables  



Outline 

1) Multivariate model-based approach for the assessment  

    of complexity of the cardiovascular system 

   

2) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of open loop interactions  

 

3) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of closed loop interactions  

 

4) Granger-causality: a method for the quantification 

    of the contribution of specific mechanisms to the overall 

    complexity   
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Multivariate AR model  

where 

wrr, wsap, wr are WGN with zero mean and variance l2
rr, l

2
sap, l

2
r 

Arr-rr(z), Asap-sap(z), Ar-r(z), are causal FIR filters of order p describing the auto-link 

       of a series on itself   

Bsap-rr(z), Br-rr(z), Br-sap(z) are causal FIR filters of order p describing the cross-link  

       between series  (immediate effects are not modeled) 

Brr-sap(z), Brr-r(z), Bsap-r(z) are causal FIR filters of order p+1 describing the cross-link  

       between series  (immediate effects are modeled)  

y(n) = A(z).y(n) + w(n) 

with   

y(n) = 

r(n)  

sap(n)  

rr(n) 

w(n) = 

wr(n)  

wsap(n)  

wrr(n) 

A(z) = 

Arr-rr(z) Brr-sap(z) Brr-r(z) 

Bsap-rr(z) Asap-sap(z) Bsap-r(z) 

Br-rr(z) Br-sap(z) Ar-r(z) 

The coefficients of A(z) are estimated via least squares approach and 

the model order p is optimized via Akaike criterion for multivariate processes 



Defined the prediction error as  


 

y(n/n-1) = A(z).y(n) 


 
 


 

MSPErr, MSPEsap, and MSPEr lie on the main diagonal of L2   

Goodness of fit of the multivariate AR model 

The one-step-ahead prediction of y(n) is 

S e(n).eT(n)     
n=1 

N 

N 

 1 
L2 =   

where T stands for the transpose operator  

MSPErr = complexity of cardiac control 

MSPEsap = complexity of vascular control   

e(n) = y(n) – y(n/n-1) 

the covariance matrix of the prediction error, L2, is  



Experimental protocol 

9 healthy males (age: 25-46, 9 men) 

Experimental sessions were carried out in 3 days 

We recorded ECG (lead II) and noninvasive finger blood pressure  

(Finapress 2300) at 500 Hz. Respiratory series was obtained by  

assessing respiratory-related amplitude changes of the ECG  

AT: parasympathetic blockade with 40 g.kg-1 i.v. atropine sulfate  

PR: -adrenergic blockade with 200 g.kg-1 i.v. propranolol 

AT+PR: -adrenergic blockade with PR after parasympathetic  

               blockade with AT 

CL: 120 minutes after 6 g.kg-1 per os clonidine hydrochloride to  

       centrally block the sympathetic outflow to heart and vasculature  

 

AT+PR session followed AT session  

AT, PR and CL were always preceded by baseline (B) recording 

Series of 256 beats were analyzed after linear detrending 



MSPE of rr vs MSPE of sap during pharmacological 

challenges 

** p<0.001 

A. Porta et al, J Appl Physiol, 113, 1810-1820, 2012  



MSPE of rr vs MSPE of sap during pharmacological 

challenges 

MSPE of rr  MSPE of sap  

A. Porta et al, J Appl Physiol, 113, 1810-1820, 2012  

* p<0.05 vs B 



Experimental protocol 

19 nonsmoking healthy humans (age: 21-48, median=30, 8 men) 

We recorded ECG (lead II), noninvasive finger arterial pressure  

(Finometer MIDI) and respiration (thoracic belt) at 300 Hz 

during head-up tilt (T)  

 

 

 

 

 

 

 

 

Each T session (10 min) was always preceded by a session (7 min)  

at rest (R) and followed by a recovery period (3 min) 

Table angles were randomly chosen  

within the set {15,30,45,60,75,90}  

Series of 256 beats were analyzed after linear detrending 

http://www.healthyhearts.com/10f1.gif


MSPE of rr vs MSPE of sap during graded  

head-up tilt 

** p<0.001 

A. Porta et al, J Appl Physiol, 113, 1810-1820, 2012  



MSPE of rr vs MSPE of sap during graded 

head-up tilt 

MSPE of rr  MSPE of sap  

* p<0.05 vs B 

A. Porta et al, J Appl Physiol, 113, 1810-1820, 2012  



Experimental protocol 

- 12 Parkinson disease (PD) patients without orthostatic hypotension 

  or symptoms of orthostatic intolerance (age: 55-79, median=65,  

  8 men, Hoehn and Yhar scale=2-4) 

 

- 12 healthy control (HC) subjects (age: 58-72, median=67, 7 men) 

We recorded ECG (lead II), noninvasive finger arterial pressure  

(Finapress 2300) and respiration (thoracic belt) at 300 Hz during  

75° head-up tilt (T75)  

 

Each T75 session (10 min) was always  

preceded by a baseline (B) session  

(10 min) at rest in supine position  

Series of 256 beats were analyzed after linear detrending 

http://www.healthyhearts.com/10f1.gif


MSPE of rr vs MSPE of sap in Parkinson 

disease patients 

* p<0.05 within population  

# p<0.05 within series 

A. Porta et al, J Appl Physiol, 113, 1810-1820, 2012  



MSPE of rr vs MSPE of sap in Parkinson  

disease patients  

MSPE of rr  MSPE of sap  

* p<0.05 within population  

# p<0.05 within experimental condition 

A. Porta et al, J Appl Physiol, 113, 1810-1820, 2012  



Conclusions (healthy humans) 

Complexity of vascular control is smaller than that of cardiac 

regulation  

 

Vagal activity keeps high the complexity of the cardiac control  

 

Sympathetic activity keeps low the complexity of vascular control 

 

Complexity analyses of cardiac and vascular controls provide 

different information 

 



Conclusions (Parkinson disease patients) 

In Parkinson disease patients without orthostatic hypotension  or 

symptoms of orthostatic intolerance the impairment of cardiac 

control becomes noticeable in response to an orthostatic challenge 

 

 

In Parkinson disease patients without orthostatic hypotension  or 

symptoms of orthostatic intolerance the impairment of vascular 

control is noticeable just in baseline condition 



Outline 

1) Multivariate model-based approach for the assessment  

    of complexity of the cardiovascular system 

   

2) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of open loop interactions  

 

3) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of closed loop interactions  

 

4) Granger-causality: a method for the quantification 

    of the contribution of specific mechanisms to the overall 

    complexity   



Trivariate open loop model describing heart 

period variability 

Cardiopulmonary 

pathway 

Baroreflex  

Pathway modulating RR 

independently of  SAP and R 

A. Porta et al, Am J Physiol, 279, H2558-H2567 , 2000  



where 

wrr, wsap, wr are WGN with zero mean and variance l2
rr, l

2
sap, l

2
r 

Arr-rr(z), Asap-sap(z), Ar-r(z), Brr-sap(z), Brr-r(z), Drr(z), are FIR filters of order p  

in the z-domain  
 

rr(i) = Arr-rr(z).rr(i) + Brr-sap(z).sap(i) + Brr-r(z).r(i) +            .wrr(i) 
1 

1-Drr(z) 

sap(i) = Asap-sap(z).sap(i) + wsap(i) 

r(i) = Ar-r(z).r(i) + wr(i) 

ARr model on r:  

ARsap model on sap: 

ARrrXsapXrARw model on rr: 

Trivariate open loop model describing heart 

period variability 



Trivariate open loop model: factorization of 

heart period variability into partial processes 

rr(i)|wsap
=                                           . wsap(i) 

(1-Arr-rr)
.(1-Asap-sap) 

Brr-sap 

where 

rr(i)|wr
=                                           . wr(i) 

(1-Arr-rr)
.(1-Ar-r) 

Brr-r 

rr(i)|wrr
=                                           . wrr(i) 

(1-Arr-rr)
.(1-Drr) 

1 

rr(i) = rr(i)|wsap
+ rr(i)|wr

 + rr(i)|wrr 

baroreflex pathway 

cardiopulmonary pathway 

Under the hypothesis of uncorrelation among wrr, wsap and wr,  

the rr series can be factorized as 



Trivariate open loop model: heart period  

variability decomposition 

s2
rr = s2

rr|wsap
+ s2

rr|wr
 + s2

rr|wrr 

where 

s2
rr|wsap

 is the variance of rr(i)|wsap
 
 

s2
rr|wr

 is the variance of  rr(i)|wr 

s2
rr|wrr

 is the variance of rr(i)|wrr 

Under the hypothesis of uncorrelation among wrr, wsap and wr,  

the variance of rr series can be factorized as 



Assessing the contributions of baroreflex 

and cardiopulmonary pathways to the  

complexity of heart period variability 

Contribution of baroreflex  

to RR complexity 

s2
rr|wsap

 
 

s2
rr 

c2
rr-sap = 

0c2
rr-sap 1

 

Contribution of cardiopulmonary  

pathway to RR complexity  

s2
rr|wr

 
 

s2
rr 

c2
rr-r = 

0c2
rr-r 1

 



Baroreflex and cardiopulmonary contributions to the  

complexity of heart period variability during graded  

head-up tilt: the open loop trivariate model approach  

A. Porta et al, Comput Biol Med, 42, 298-305, 2012  

baroreflex contribution cardiopulmonary contribution 



Trivariate open loop model describing  

QT-RR relation 

Pathway modulating QT 

independently of RR and R 

QT-RR relation  

QT-R coupling 

A. Porta et al, Am J Physiol, 298, H1406-H1414, 2010  



Approximation of the QT interval and  

measurement conventions  

The i-th RTe interval follows the i-th RR interval 



Experimental protocol 

17 healthy young humans (age from 21 to 54, median=28) 

We recorded ECG (lead II) and respiration (thoracic belt) at 1 kHz 

during head-up tilt (T)  

 

 

 

 

 

 

 

 

Each T session (10 min) was always preceded by a session (7 min)  

at rest (R) and followed by a recovery period (3 min) 

Table angles were randomly chosen  

within the set {15,30,45,60,75,90}  

http://www.healthyhearts.com/10f1.gif


A. Porta et al, Am J Physiol, 298, H1406-H1414, 2010  

Contributions to the complexity of RTe variability  

during graded head-up tilt: the open loop trivariate  

model approach  

contribution of RR contribution of R 
contribution of influences  

unrelated to RR and R 



Conclusions (open loop model) 

The contribution of baroreflex to the complexity of heart period 

variability gradually increases as a function tilt table angle 

 

The contribution of cardiopulmonary pathway to the complexity 

of heart period variability gradually decreases as a function of tilt 

table angle 

 

The contribution of the QT-RR relation to the complexity of QT 

variability gradually decreases as a function of tilt table angle 

 

The contribution of inputs independent of heart period changes 

and respiration to the complexity of QT variability gradually 

increases as a function of tilt table angle 



Outline 

1) Multivariate model-based approach for the assessment  

    of complexity of the cardiovascular system 

   

2) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of open loop interactions  

 

3) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of closed loop interactions  

 

4) Granger-causality: a method for the quantification 

    of the contribution of specific mechanisms to the overall 

    complexity   



Trivariate closed loop model describing 

heart period variability 

G. Baselli et al, Med Biol Eng Comput, 32, 143-152, 1994 

baroreflex feedback 

mechanical feedforward 

direct pathway from r to sap 

direct pathway from r to rr 

noise on sap 

noise on rr 



r(i) = Ar-r(z).r(i) + wr(i) 

ARr model on r:  

ARrrXsapXrARw model on rr: 

ARsapXrrXrARw model on sap: 

sap(i) = Asap-sap(z).sap(i) + Bsap-rr(z).rr(i) + Bsap-r(z).r(i) +               .wsap(i) 
1 

1-Dsap(z) 

rr(i) = Arr-rr(z).rr(i) + Brr-sap(z).sap(i) + Brr-r(z).r(i) +               .wrr(i) 
1 

1-Drr(z) 

where 

wrr, wsap, wr are WGN with zero mean and variance l2
rr, l

2
sap, l

2
r 

Arr-rr(z), Asap-sap(z), Ar-r(z), Brr-sap(z), Brr-r(z), Bsap-rr(z), Bsap-r(z), Drr(z), Dsap(z)  

are FIR filter of order p in the z-domain  
 

Trivariate closed loop model describing 

heart period variability 



rr(i) = rr(i)|wsap
+ rr(i)|wr

 + rr(i)|wrr 

rr(i)|wsap
 =                                           . wsap(i) 

Dloop
.(1-Dsap) 

Brr-sap 

where 

rr(i)|wr
 =                                                 . wr(i) 

Dloop
.(1-Ar-r) 

Brr-sap
.Bsap-r+Brr-r

.(1-Asap-sap) 

rr(i)|wrr
 =                                           . wrr(i) 

Dloop
.(1-Drr) 

1-Asap-sap 

with Dloop=(1-Arr-rr)
.(1-Asap-sap)-Arr-sap

.Asap-rr 

baroreflex pathway 

cardiopulmonary pathway 

Trivariate closed loop model: factorization of 

heart period variability into partial processes 

Under the hypothesis of uncorrelation among wrr, wsap and wr,  

the rr series can be factorized as 



Trivariate closed loop model: heart period  

variability decomposition 

s2
rr = s2

rr|wsap
+ s2

rr|wr
 + s2

rr|wrr 

where 

s2
rr|wsap

 is the variance of rr(i)|wsap
 
 

s2
rr|wr

 is the variance of rr(i)|wr 

s2
rr|wrr

 is the variance of rr(i)|wrr 

Under the hypothesis of uncorrelation among wrr, wsap and wr,  

the variance of rr series can be factorized as 



Assessing the contributions of baroreflex 

and cardiopulmonary pathways to the  

complexity of heart period variability 

Contribution of baroreflex  

to RR complexity 

s2
rr|wsap

 
 

s2
rr 

c2
rr-sap = 

0c2
rr-sap 1

 

Contribution of cardiopulmonary  

pathway to RR complexity  

s2
rr|wr

 
 

s2
rr 

c2
rr-r = 

0c2
rr-r 1

 



A. Porta et al, Comput Biol Med, 42, 298-305, 2012  

Baroreflex and cardiopulmonary contributions to the  

complexity of heart period variability during graded  

head-up tilt: the closed loop trivariate model approach  

baroreflex contribution cardiopulmonary contribution 



A. Porta et al, Comput Biol Med, 42, 298-305, 2012  

Decomposition of cardiopulmonary contributions to the  

complexity of heart period variability during graded  

head-up tilt: the closed loop trivariate model approach  

cardiopulmonary contribution 

mediated by SAP  

direct cardiopulmonary 

contribution 



Conclusions (closed loop model) 

The contribution of baroreflex to the complexity of heart period 

variability gradually increases as a function tilt table angle 

 

The contribution of cardiopulmonary pathway to the complexity 

of heart period variability was unaffected by the orthostatic 

challenge 

 

The contribution of cardiopulmonary pathway to the complexity 

of heart period variability can be decomposed into two terms, 

related to direct link from respiration to heart period and to 

indirect link mediated by systolic arterial pressure changes 

 

The direct contribution of cardiopulmonary pathway to the 

complexity of heart period variability decreases, while the 

indirect one increases with tilt table angles 



Outline 

1) Multivariate model-based approach for the assessment  

    of complexity of the cardiovascular system 

   

2) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of open loop interactions  

 

3) Multivariate model-based approach for the assessment  

    of the contribution of specific mechanisms to the  

    overall complexity in the case of closed loop interactions  

 

4) Granger-causality: a method for the quantification 

    of the contribution of specific mechanisms to the overall 

    complexity   



Granger causality: definition 

Given Ω = {x1, …, xi, …, xM} the set formed by M signals  

with xi = {xi(n), n=1, …, N} 

xj is said to Granger-cause xi if xi is better predicted in Ω  

than in Ω after excluding xj (i.e. Ω-{xj}) 



Granger causality: modeling 

ARxiXΩ-{xi} model in Ω: 

ARxiXΩ-{xi,xj} model in Ω-{xj}: 

xi(n) = Axi-xi(z).xi(n) +     Bxi-xk(z).xk(n) + wxi(n) 
k=1, k≠i 

M 

Σ   

xi(n) = Axi-xi(z).xi(n) +     Bxi-xk(z).xk(n) + wxi(n) 
k=1, k≠i,j 

M 

 Σ    



Granger causality: assessment of the mean square 

prediction error 

Given the predictors 

xi(n)|Ω = Axi-xi(z).xi(n) +     Bxi-xk(z).xk(n)  
k=1, k≠i 

M 

Σ   ^ ^ ^ 

xi(n)|Ω-{xj} = Axi-xi(z).xi(n) +      Bxi-xk(z).xk(n)  
k=1, k≠i,j 

M 

 Σ    ^ ^ ^ 

and defined the predictor errors as 

the mean square prediction errors (MSPEs) can be assessed as  

e(n)|Ω = xi(n) – xi(n)|Ω   


 

    MSPExi|Ω =         S     
 1 

N-1 i=1 

N 

e2(n)|Ω     

e(n)|Ω-{xj} = xi(n) – xi(n)|Ω-{xj}   


 

and  

and      MSPExi|Ω-{xj} =         S     
 1 

N-1 i=1 

N 

e2(n)|Ω-{xj}    
 



Granger causality: predictability improvement 

Fxj → xi|Ω = 
–       MSPExi|Ω

      MSPExi|Ω-{xj} 
 

     MSPExi|Ω
      νnum 

     νden . 

     νnum = degrees of freedom of the numerator  

                (i.e. number of coefficients of Bxi-xj) 

      νden = degrees of freedom of the denominator 

                (i.e. N – number of coefficients of the model ARxiX|Ω-{xi}) 

If Fxj → xi|Ω is larger than the critical value of the F distribution   

for p<0.01, the null hypothesis of absence of causality from 

xj to xi is rejected and the alternative hypothesis, xj → xi, is 

accepted  



Fxj → xi|Ω represents the fractional contribution of the relation 

from  xj to xi to the complexity of xi in Ω 

Granger causality: fractional contribution 

to complexity  

Fxj → xi|Ω = 
–       MSPExi|Ω

      MSPExi|Ω-{xj} 
 

     MSPExi|Ω
      νnum 

     νden . 



Experimental protocol 

19 nonsmoking healthy humans (age: 21-48, median=30, 8 men) 

We recorded ECG (lead II), noninvasive finger arterial pressure  

(Finometer MIDI) and respiration (thoracic belt) at 300 Hz 

during head-up tilt (T)  

 

 

 

 

 

 

 

 

Each T session (10 min) was always preceded by a session (7 min)  

at rest (R) in supine position. 

Table angles were randomly chosen  

within the set {15,30,45,60,75,90}  

Series of 256 beats were analyzed after linear detrending 

http://www.healthyhearts.com/10f1.gif


Granger causality: fractional contribution 

to complexity of heart period variability 

Given Ω={rr, sap, r} 

A. Porta et al, In: “Methods in brain connectivity inference through  

multivariate time series analysis”, CRC Press, Chapter 15 , in press 



Conclusions 

Complexity of the cardiovascular control can be assessed 

through a multivariate model-based approach  

 

 

This approach is particularly helpful to asses the contributions 

to complexity of physiological variables given the presence of 

causal relations with others  

 

 

Since this approach assesses the interactions between variables  

in specific time directions (e.g. along baroreflex), it allows 

the characterization of specific relations among variables  


